An Algebraic Approach to Intuitionistic Connectives
نویسندگان
چکیده
It is show11 that axiomatic extensions of intuitionistic propositional calculus defining univocally new connectives. including those proposed by Gabbay. are strongly complete with respect to valuations in Heyting algebras with additional operations. In all cases. the double negatio~l of such a connective is equivalent to a formula of intnitionistic calculus. Thus, under the excluded third law it collapses to a classical formula. showing that this conditio~l in Gabbay's definition is redundant. Moreover, such connectives can not be interpreted in all Heyting algebras. unless they are already equivalent to a formula of intnitionistic calculus. These facts relativize to connectives over intermediate logics. In particular, the intermediate logic with values in the chain of length n may be "completed conservatively by adding a single unary connective, so that the expanded system does not allow further axiomatic extensions by new connectives. $
منابع مشابه
Truth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملAN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملAn Abstract Algebraic Logic View on Judgment Aggregation
In the present paper, we propose Abstract Algebraic Logic (AAL) as a general logical framework for Judgment Aggregation. Our main contribution is a generalization of Herzberg’s algebraic approach to characterization results in on judgment aggregation and propositionalattitude aggregation, characterizing certain Arrovian classes of aggregators as Boolean algebra and MV-algebra homomorphisms, res...
متن کاملAlgebraic Logic view on Judgment Aggregation ?
In the present paper, we propose Abstract Algebraic Logic (AAL) as a general logical framework for Judgment Aggregation. Our main contribution is a generalization of Herzberg’s algebraic approach to characterization results on judgment aggregation and propositionalattitude aggregation, characterizing certain Arrovian classes of aggregators as Boolean algebra and MV-algebra homomorphisms, respec...
متن کاملIntuitionistic Layered Graph Logic: Semantics and Proof Theory
Models of complex systems are widely used in the physical and social sciences, and the concept of layering, typically building upon graph-theoretic structure, is a common feature. We describe an intuitionistic substructural logic that gives an account of layering. The logic is a bunched system, combining the usual intuitionistic connectives, together with a non-commutative, non-associative conj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 66 شماره
صفحات -
تاریخ انتشار 2001